Towards a domain-driven, model-based
approach to developing clinical information
systems: innovating for the future in NHS
Wales

Dr. Mark Wardle MD FRCP

Consultant Neurologist
University Hospital Wales
Heath Park, Cardiff. CF14 4XW

3rd February 2017

Contents

(I__Introduction 5
2__The medical record| 9
2.1~ Paper medical records|. oo 9
2.2 Clinical governance| L. 9
2.3 Electronic medicalrecords 10

B Clinical Modelling| 13
(3.1 High-level functional requirements| 13
[3.2 The process of developing a clinical modelf. 13
[3.3 Modelling the medical record|. 14
[3.3.1 Electronic medical records and the importance of context [

| and provenance. e e 15
[3.4 Modelling the processes involving medical records.| 17
[3.5 Modelling and implementation| 18
[3.5.1 Avoiding mismatches between a model and real-life.| . . . 18

[4 Data standards and terminology| 20
............................ 20

21

24

24

25

25

26

44 openEHR| o 27

45 TOINCl . ..o 28
5__Technical architecturel 29
[>.1 Have an overall vision but plan for change| 29
[5.2 The model-view-controller (MVC) design pattern; ensure separa- |

[tionofconcernsl 30

[5.3 Adopt test-driven development)o 30

[5.4 Favour automated testing and deployment pipelines with continu- |

| ousdelivery| 35
[5.5 Use a layered structure within applications| 36
[5.6 Use loose coupling between components; design by contract| . . . 36
[5.7 Adopt a service-orientated architecture|. 38
[5.8 Use a layered architecture with services| 39
[5.9 Who 1s in control 1n a layered architecture?, 40
[5.10 Model process and not simply datal 40
[5.11 Favour immutability of data, but understand that there 1s no one [

[truth’l .. 41
[5.12 Make services idempotent| 42
[5.13 Adopt uniform resource identifiers for access to resources|. 43
[5.14 Are there exceptions to the use of a layered architecture? 43
[5.15 Pushvs.pull] 45
[5.16 An open platiorm for the health enterprise 47
[5.17 Data analytics and an enterprise-wide warehouse] 49
[5.18 User-facing applications| 49

[6 Organisational structures| 51
[6.1 Bind organisational structure to the technical architecture| 51
[6.2 Strategy, procurement and planning| 51
(6.3 Clinical informatics, career development and skalls] 52

7 Conclusions for NHS Wales 53

53
54

[8 Worked examples| 56

(8.1 Emergency unit systems| 56
8.1.1 Introduction|. 56
[8.1.2 Analyse process, workflow and data requirements; nest- [

mmgofdatal, 57
[8.1.3 Designbycontractf 57

[8.1.4 National interoperability requirements| 58

[8.1.5 Local integration requirements| 59
[8.1.6 A single specification vs. a single productf 59
[8.2 Diagnoses and problem lists| 60
[8.3 An all-Wales national growthchart| 64
[8.3.1 Background|. L. 64
[8.3.2 Using the growth chart across Wales| 65
[8.3.3 Designing for innovation| 67
(8.4 Prescriptions| 67

1 Introduction

I have written this document to explain my thoughts on the most appropriate way
to design and clinical information systems that valuably support the process of
healthcare. As such, it includes a methodology for creating software for use by
clinicians, managers and administrators to support both the day-to-day care of
patients and the management of services for groups of patients.

I divide the “process of healthcare” into three core themes which are related

and inter-dependent:
1. The ‘day-to-day’ care of a single patient; data relates to a single individual.

2. The management, audit and governance of clinical services; data relates to

grouped, aggregated patient data and is service-specific.

3. Supporting clinical research; data relating to a patient’s suitability for re-

search projects as well as enrolment, consent and research-level data.

All three themes are important and traditionally, healthcare information tech-
nology has focused only on the administrative side of the management of clinical
services. As a result, we commonly know how many patients are seen in clinic,
but have very little information as to why they are being seen or how they fare
after treatment. Important questions such as “how many patients with Parkin-
son’s disease do we care for?”, “what are the outcomes for patients after having a
mastectomy?” or “why are we seeing these patients in outpatient clinic?”’ cannot
be answered.

I have developed a working electronic patient record system that has been in
daily and continuous use since 2009 within NHS Wales that uses many of these
architectural design ideas. In particular, it is designed around a robust informa-
tion model that abstracts the reality of the generic and specialised processes of
healthcare together with prospective longitudinal outcome data.

My general conclusions are:

e The development of healthcare information technology must be underpinned
by a robust open platform built on data standards, clinical modelling and in-

teroperability.

e Such developments need teams made up of clinicians and information tech-
nology staff, with all involved receiving protected time as well as training,

education and career development.

e There is and will continue to be a myriad of disparate heterogeneous sys-
tems and all developments must consider interoperability of both data and

process as a pre-requisite to continued funding.

o Aggregated service-level data must be made readily available to appropriate
clinical staff and those responsible for the management of clinical services.
All systems should consider the benefit of making aggregated data available
in real-time and therefore how the underlying model and implementation

can support such uses.
My specific conclusions for NHS Wales are:

e The soundbite “Once for Wales” is currently being interpreted in a “sys-
tem” or “product” based context forcing an approach in which success is
defined by the rollout of specific applications. “Once for Wales” needs to
be re-defined and re-imagined to focus on functionality, core national in-
frastructure and a service-based approach underpinned by a focus on data

standards, interoperability and process mapping.

e That a focus on a single application “Welsh Clinical Portal” will not meet
the needs of clinical users or patients, slows and stifles innovation and is not
fit-for-purpose; indeed there are already and will continue to be a multipli-
city of user-facing applications which must be considered when considering
health technology in NHS Wales.

e That current strategy pits the NHS Wales Informatics Service against in-
dividual health boards in relation to both strategy and the use of limited

resource, instead of fostering collaboration and innovation.

e That current developments focus on user-interface design rather than defin-
ing the problem, modelling the data and the processes relating to those data

and understanding information flow.

e That current technology and research grant funding frequently creates single
products or solutions with limited scope and little chance of more wide-
spread adoption due to lack of cohesive management from Government and
a lack of a formal interoperability framework in which new technologies
can be piloted and subsequently rolled-out. Instead, many projects result in
the creation of more data silos in which data and processes relating to those
data are not available across the health and social care services outside of
the original scope of the project. As such, limited value is obtained from

current grant funding.

e That a new framework for success and progress be developed that focuses
upon high-level clinical and information requirements rather than the de-
ployment of a specific application. Such a framework must focus on those
targets that have the most benefit for patients. As such, we must deem it a
success when a clinical user can access the patient record in an emergency
care setting irrespective of the software used instead of only thinking we are

successful when a particular organisation rolls out a particular product.

e That to realise the benefits of information technology in healthcare for pa-
tients in Wales, a new multiple-tier open platform strategy be developed.
Such a platform would consist of a core national foundation of robust,
highly regulated, highly reliable services supporting tiers of additional high-
level frameworks acting as vendor-neutral middleware layers providing func-
tionality across organisations and clinical pathways. A new top-level innov-
ation tier should be developed which allows small, low-risk, highly innov-
ative applications to be developed that support specific clinical processes or

workflow.

e That the current organisational structure of the NHS Wales Informatics
Service (NWIS) in how it relates to Welsh Government, individual health
boards and its own staff is not fit-for-purpose. To whom does NWIS and its
staff work and are the current governance arrangements sufficient to ensure
success in the future? Are staff integrated in teams to support the clinical

and technical architecture outlined within this document?

e NHS Wales should consider a clinical informatics fellowship scheme and
informatics academy in which healthcare professionals and information
technology professionals with interests in informatics, performance, con-

tinuous improvement and software can engage and develop.

To provide evidence for these statements, I will begin in Section [2| with a
discussion on the medical record and its structure and the workflow that is built
upon this foundation. In creating an electronic health record, I believe a focus on
developing clinical and process information models to be essential and I discuss
this in Section [3] I will then cover how data standards and terminology are used
within such an information model in Section 4]

The design of clinical information systems relies not only on informatics ex-
pertise, but on understanding of the constraints and limitations of any technical
solution. It is therefore critical that those who commission, scope or design clin-
ical systems have an understanding of sound software engineering practices. As
such, in Section [5|I discuss the advantages and disadvantages of different tech-
nical architectures. I strongly believe that the technical architecture is determined
logically from an understanding of the medical record and clinical modelling as
outlined in Section [2|and Section 3| Similarly, the architecture determines the re-
quired organisational structures that build, support and maintain those core pieces
of software. As such, I extend the discussion from technical architecture to organ-
isational structures in Section

Finally, I will work through several clinical examples to demonstrate the meth-
odology in action in Section [§] Firstly, I consider systems designed for the man-
agement of emergency units in Section [8.I] After this, I explain how I would
approach the structured recording of diagnostic and problem lists in Section (8.2
I cover the possible future development of a national growth chart for children
in Section [8.3]and my final example covers prescriptions in relation to electronic

discharge documentation in Section (8.4

2 The medical record

“You’re a victim of it or a triumph because of it. The human mind
simply cannot carry all the information without error so the record

becomes part of your practice.”

Dr Larry Weed, Internal Medicine Grand Rounds, 1971

The medical record encompasses and complex, disparate and evolving collec-
tion of information relating to the day-to-day care of an individual patient. Ag-
gregated, such data provide valuable information about cohorts of patients man-
aged by a clinical service supporting clinical governance and the management of

the that service.

2.1 Paper medical records

Paper medical records are expensive, poorly accessible and do not support team
working effectively. They are frequently poorly structured and while they contain
large amounts of data, it is difficult to use those data to support clinical care. Paper
records must be tracked and within a large organisation and such records need to
be made available to clinical and administrative staff in order to appropriately
manage the patient. This is particularly difficult when a single patient may be
under the care of multiple services which is particularly common for patients with

chronic long-term health conditions.

2.2 Clinical governance
“If you can’t audit a thing for quality, it means you do not have the
means to produce quality”.

Dr Larry Weed, Internal Medicine Grand Rounds, 1971

Clinical governance is a framework in which we are accountable for continu-
ously improving the quality of our services safeguarding high standards of care

by creating an environment in which excellence in clinical care can flourish.

An important part of clinical governance is in the use of data to understand
both process and outcomes. A typical clinical department will know how many
patients are waiting for an outpatient appointment but will not be able to under-
stand why they are waiting or understand a patient’s eventual outcome because
usually only administrative data are collected systematically.

Many clinical teams will undertake service improvement projects or clinical
audits, in which a clinician identifies a problem, undertakes to measure that prob-
lem by clinical audit, analyses the results and makes an intervention in order to
solve that problem. For example, a typical clinical audit might be in the assess-
ment of risk of deep vein thrombosis in inpatients in which a doctor will sys-
tematically analyse the paper notes of a group of inpatients, record and present
the results and enact a change to improve those results with a plan to re-audit after
that intervention. Such a methodology has been formalised by the Six Sigma qual-
ity initiative[] in which five steps form a virtuous cycle of continuous improvement
(Figure[).

Such continuous improvement is possible with paper records, but it cannot
be performed systematically and routinely, requires a large amount of manual
intervention and the cycle of improvement is slow; the analysis of results and a
plan of action to effect improvement may take months with no guarantees that any
systematic assessment of those interventions will be performed.

It therefore follows that the routine and systematic collection of process and
clinical outcome data offers the potential to radically improve the efficiency of
the continuous improvement lifecycle as long as sufficient consideration is given
to the use of such data, the context of those data and an understanding of the

processes in which those data are involved.

2.3 Electronic medical records

Electronic medical records and workflow should model and abstract real-life pro-
cesses but digitisation of paper processes should not be a slavish exact copy of
existing processes, particularly when technology offers opportunities to improve

the process of healthcare.

'See https://www.isixsigma.com/dictionary/dmaic/

10

https://www.isixsigma.com/dictionary/dmaic/

1. Define 2. Measure

define the processes > formulate a data
and the actors involved collection strategy and
in that process apply it to our process
A/
3. Analyse

identify the opportunities
for improvement

Y

5. Control 4. Improve
act to keep the D create and effect
improvements on course improvements

Figure 1: Six Sigma methodology of continuous quality improvement.

Indeed, we are facing an explosion of clinical data created by health profes-
sionals, administrators and patients themselves and clinical information systems
must consider how they will integrate and make such data useful in clinical prac-
tice. For example, Figure [2] shows how all of these sources of data are mutually
dependent on one another. For example, what is the point in recording patient
reported outcome measures if that data cannot be safely linked to a particular in-
tervention or procedure and the co-morbidities and baseline assessments for that
patient?

The logical conclusion is that we will always have a multiplicity of systems
and that in order to create robust clinical systems that outlive our current level
of technological advancements, we have a responsibility to insist on open well-
documented data standards, to integrate a well-developed clinical terminology,

and foster collaboration, iterative development and embrace interoperability.

11

.PI0021 [ROIPaW, Q) UTYIIM SMOJJ BIR(T T 3INJI]

elep [einpadoid 1o oisoubelp paALep-ueDIulD

Uo Juspuadep ejep 90IABp pUE Judlied

(sa|qeseam 6H8) Buoyuow
awoy pjay-juaned ‘Alojeinquiy

elep [eolbojolg ‘seinsesw

/ -

» awooNo ol10ads-aseasip
pue ousuab payodal-jusied

sainseawl
BWOOIN0 PUB [BUOHUSAIB)UI

‘onsoubelp papod pue
pasipiepuels paALIep-uBIoIuID

—

elep [euipnyibuol [aAs|-jusied

selpnis yoseasoy

SHOY02 yoleasey

l——————— wesuon

syuaned

l«——— 9|gEUNS

10 uoneslNUSp!

S]UBWIUOIIAUS [BDIUIJD BYl|-[eay

SHOY0O SHN

S1HOHOJ IN3llvd

ejep oidAjousyd [aAs-moT
slaquinu ablJe

JINIr yum spuened jie, -bo

ejep
oldAjouayd [aAsj-wnipay
slaquinu wnipay

Auebins Asdajide
bujobispun sjusied, “bo

ejep oidAjouayd |ans|-ybiH
slaquinu Mo

12

3 Clinical Modelling

A model is an abstraction of the real-world distilling knowledge into core con-
cepts and processes. A model is a careful balance between complexity and over-
simplification with models that are too complex providing brittle abstractions
which are poorly generalisable and models that are too simple not supporting all
of the demands placed upon it in real-life clinical scenarios.

Modelling is an art but the approach can be made more systematic if modellers
work iteratively within a supporting organisational environment clinical and tech-
nical staff work together in logical teams. Importantly, the scope of their model
should be limited; large enough to solve the domain problems but small enough
to result in a practical implementation. As such, it is important to have an ap-
propriate separation of concerns in which teams can work independently of other
teams as much as possible and that interfaces between that team and others are

formalised on a contractual basis.

3.1 High-level functional requirements

Clinical modelling is dependent on knowledge of the domain and the functional
requirements to which the model will serve. It is useful to abstract these require-
ments to make them as generally-applicable as possible and not to generate need-
lessly specific requirements with limited applicability. However, the process of
generated functional requirements and a subsequent data and process modelling
is not a one-way process but must be an iterative two-way development in which
there is feedback and discussion among all stakeholders and between all steps of

requirements-gathering, modelling and implementation.

3.2 The process of developing a clinical model

I suggest dividing clinical modelling into three related steps:

1. Modelling data within a medical record

2. Modelling processes and workflow relating to a medical record

13

3. Implementation of a clinical model into a workable and practical solution.

These three steps should be considered separately but are dependent on one
another and inherently depend on the functional requirements. In designing clin-
ical information systems, a data model may change infrequently or a design may
even be correct in perpetuity; a systolic blood pressure recorded using a cuff on
the right arm of an individual will always be a systolic blood pressure recorded
using a cuff on the right arm of an individual. However, a model of the processes
of care will likely change more frequently as a result of changes in working prac-
tices and service design, and an implementation may change even more frequently
as a result of new technologies and devices.

As each step is dependent on each other, modelling must be an iterative work
with feedback loops between all steps rather than performed in sequence by dif-
ferent members of the team. An implementation cannot be designed without con-
sideration of the data structures and processes that leverage the data within those
structures and a model cannot be designed unless it is practical and efficient to per-
form an implementation. It also follows that clinical modelling must be performed
by a team of individuals with a range of skills including those with important do-
main knowledge such as health professionals as well as those responsible for the
design and implementation of the resulting software such as technical architects
and software developers.

Traditional waterfall-based design methods emphasise a sequential process in-
volving business analysis and scoping, design, implementation, verification and
then subsequent maintenance. Indeed, such methods are commonly used within
NHS Wales with a focus on producing a product to solve a particular problem
which then becomes ‘complete’ and enters ‘maintenance’. I strongly believe that
this approach is wrong and instead development should by underpinned by a ro-
bust model developed iteratively considering both workflow and implementation

together with an understanding that any solutions will never be complete.

3.3 Modelling the medical record

The breadth of knowledge within the medical record is potentially daunting with

multiple types of data recorded in many different contexts and for many different

14

purposes. Examples of data recorded for the day-to-day clinical care of patients is
shown in Table|[I] For these examples, such data will need to be shown to users in
order for them to make sense of a patient’s condition or clinical course, but also
used to monitor a clinical service by providing real-time data on patient flow and
progression along one of many clinical pathways.

I advocate a clinical record in which much information is stored in a highly
structured format. Some free-text is necessary but where possible, clinical inform-
ation should be recorded using a standardised terminology such as SNOMED CT
held within larger data structures representing the clinical model.

Advances in technology such as new interventions, evolving diagnoses, new
diagnostic tests and changing processes result in an ever-expanding knowledge
base to which software systems must evolve and adapt. As such, no software
system designed to model the medical record will ever be complete and as such,
designing for incremental change in the medium and long-term is a pre-requisite.
If real-world knowledge is ever-changing, then models too must constantly be re-
fined and evolved. As such, the design and subsequent constant refinement and
evolution of any model underpinning a complex clinical information system must
be supported by an appropriate organisational structure which facilitates an iter-
ative development approach. Such iterative development requires domain experts
such as clinicians work closely in teams with developers to constantly refine their
own understanding, focus the analysis of requirements and distil what they know
to the core essentials that must underpin the design of any subsequent information

system.

3.3.1 Electronic medical records and the importance of context and proven-
ance.

An advantage of electronic records is that such records can be made universally
available wherever they are needed such as when a patient presents to an emer-
gency health facility or a new outpatient clinic or when the patient contacts a team
via email or telephone. A disadvantage of electronic records is the need for real-
time curation of patient records so that users are not overwhelmed by excessive

information that is not relevant in their specific clinical context. It is therefore vi-

15

PIOOAI [BOIpAW Ay} UM eyep jo sad£y oy Jo sojdwrexy :1 9qel,

*$159] [eo130[01sAydoInau J0 JrIpIED Sk Yyons suone3nsaAul pasijeroads jo sypoday]
'$1$9) AI0jRIOqE] [BOISO[0TRWaRY JO ANSIWAYJ0I] S8 Yons suonesnsaAul A10jeioqe] jo syrodoy
‘SueOS 10 sABI-X SB [ons suonegnsaaul A3o1o1per jo spoday

reroadg
A1o1R10QR
K3ojo1pey

*SOOIAIIS
yeay Suisn Jo douanadxs 1oy Surpre3ar juoned oy) woy s110dal paImonnsun pue paInonng
'SaInseawl YI[eay oYy109ds-9seasIp pue JOLIOUS

Jo a3uer e Juisn ssai3oxd oY) Surpie3ar juoned oy woly syuodal paInionnsun pue paInonnsS
"SOOIAIRS [BOIUI[O 1O sAemipied 0] payuI] SUOIUAA

-IQJUI puE SOTSOuSeIp SUIPN[OUL SIQJUNOJUD [EITUID JO AJOLIBA B J0J Surnpayos pue sjuounuroddy
‘ssax3oad 1ot yim 19439303 pardlsisar Apuarlnd

SI 10 9q [[IM ‘u99q sey juaned 9y} S9OIAISS [eOTUI[D pue sAemiyied yomym 01 Surje[ol UOBWLIOJU]
"UOTIURAIIUIL U} Jaije Juanjed e 10J Juowo3e

-uew Jo ueld e se [[om se ainpodoid oy JoJ suonedrpur Jurpnpoul A[renuajod A[feurpni3uo] juan
-ed oy Aq poouaLIadxa SUOTIUAISIUL pue saInpadoid oY) 01 Surje[al UOHIBULIOJUL PIPOD PAINONNS
“90UQPIAD pUE SAEP ‘QourudA01d SUIpN[OUT UONBULIOJUL [en)

-X9JU0d M 19U31030) Juaned oy Jo swo[qoid [BoTUI[d 9y 03 SUNB[QI UONBUWLIOJUL POPOd PAINIONNS
uaned ay3 A[enuslod pue Jjeis aanensuupe

pue s[euorssajoId areoyl[eay ueam1aq SUnEdIUNUWWOD Pue JUIPIOIAI JO SUBAW B sk sue[d juowase
-UBW PIM 19132307 ssa13o1d aimny Surpiedar suonenoads ualjo ‘A[snoaueiodurajuod Sauwnawos
‘Arreonioisy Aqrssod “uanied ot Jo sniels ay3 SUIPIOIAI BIEP [BUIPMIISUO] PAINIONIS PUL 1XI)-09I]

(SINHYJ) Sainseaw 90U
-1adxa payodar-juaneq

(SINO¥d) sInseawt
swoono panodar-juaned

BIED OATJRISIUTWUPY
SOOIA

-19S [eOTUI[O pue sAemyled

[euon
-UQAISJUI PUEB [eINPadoid

onsouger(q

oAnel
-Teu [eorurpd 2anodadsoig

uondrosaq

eyep Jo odLJ,

16

tal that any model supports not only the recording of information but the context
and provenance in which those data were recorded and that views of aggregated
information for a single patient take into account such contextual cues to ensure
users see the information that is required and optionally filters information.

Such issues also arise in paper records, particularly when a single patient has
multiple volumes of notes. However, as paper records serve a single organisa-
tion end-users may find important information related to their own service based
on filing standards, paper colour, logos, page layout and the names of colleagues
and can flick through the physical record more easily than a poorly curated and
unstructured digital counterpart. However, paper records fail for patients looked
after by multiple organisations, in which clinical correspondence from an outpa-
tient clinic in one facility will usually not be available in another unless manual

action by end-users is taken.

3.4 Modelling the processes involving medical records.

Medical records are more than a simply narrative of what has happened to a pa-
tient listed in sequential order. A number of important processes and workflows
exist that relate to the sending and receiving of paper-based forms that must be
considered in any abstraction of medical enterprise. Paper records such as printed
correspondence, request forms, results of investigations are sent to a responsible
individual in order for them to be read and acted upon. On some occasions, such
documentation is annotated, forming a narrative of the actions undertaken by the
end-user or forwarded to another, forming a chain of correspondence. Electronic
systems are potentially safer offering guarantees of sending and receiving such
requests, providing full audit trail functionality and non-repudiation of comments
and action. However, any process relating to a medical record must be modelled
with as much care as the modelling of data structures.

Most data standards relating to healthcare, such as HL7, openEHR, and FHIR,
model the data relating to healthcare and not the processes and workflow that re-
flect the care of patients itself. While modelling data is an important pre-requisite
in the conception and design of clinical information systems, modelling the pro-

cesses and workflow that relate to that model is firstly an important test that data

17

modelling is fit-for-purpose and secondly, critical itself in ensuring a resulting
clinical information system will be a workable and valuable asset in providing
healthcare services.

Process and workflow will change frequently as clinical services evolve and
develop and any model must take such changes into account so that any sub-
sequent implementation can flexibly handle different workflows. Abstracting
workflow is the most appropriate method to future-proof any clinical system and
modellers must then consider how to model the configuration of more abstract
workflows into a concrete implementation at runtime.

In most clinical services, data and processes currently revolve around the com-
pletion and processing of clinical documents which are subsequently filed as part
of a longitudinal prospective and immutable medical record. As such, a transac-
tional document model is usually an appropriate reasonable and accurate abstrac-

tion of current processes of care.

3.5 Modelling and implementation

Tying a clinical model to its implementation is critical. A model cannot be de-
signed without consideration of its implementation as it is possible to develop
models of data and processes that would be impractical, cumbersome or inefficient
to implement by developers. As such, close working between domain experts and
software engineers is necessary to iteratively explore and improve a model to en-
sure it meets the demands of the domain and of practical software engineering

considerations.

3.5.1 Avoiding mismatches between a model and real-life.

A mismatch between the model and real-life processes may cause confusion for
users while models that are based on the fundamentals of a particular domain res-
ult in clinical systems that are intuitive to use with readily predictable function-
ality. A model should therefore abstract real-life processes and structures when
possible so that end-users can easily understand what is happening within the
software they are using and should not be surprised by unintended consequences.

However, modelling real-life processes should not be an exact replica of an exist-

18

ing paper-based process but a careful abstraction designed to capture the essence
of the process and to be more widely generalisable.

While organisations, directorates, specialties, teams and even individual clini-
cians will have their own ways of working with disease and specialty specific data
requirements, there is a danger in thinking that data modelling is simply getting
a single group of domain experts in a room with a white-board. Instead, such
work is simply the start of a process in which these requirements are analysed and
distilled and subsequently made as generic and widely applicable as possible and
yet not made so generic that a subsequently developed model no longer meets the

needs of the original functional requirements.

19

4 Data standards and terminology

A terminology is a body of terms used within a particular subject of study or
profession. A classification is a systematic organisation of things into classes. A
classification system such as ICD-10 cannot be used as a terminology and many
terminologies cannot be easily used as a classification system. This is an important

distinction and relates to the how those data are primarily used.

4.1 SNOMED CT

SNOMED CT is a very large and comprehensive terminology. Importantly terms
can be linked by multiple relationships to other terms. This makes it possible for
software to determine that multiple sclerosis is a disease defined by demyelina-
tion of the central nervous system. When implemented properly, SNOMED CT
enables software to make intelligent decisions about what to show, what data to
request and what forms to present, based on the diagnoses entered. For example,
the database would know that a patient had epilepsy if they were given a diagnosis
of juvenile myoclonic epilepsy or frontal lobe epilepsy or any of the hundreds of
other terms that are equivalent to a diagnosis of epilepsy. Thus a command to
‘send an alert when a patient, belonging to a particular consultant, with motor
neurone disease loses 5% of their body mass compared to their baseline at dia-
gnosis’, can be implemented easily. SNOMED CT allows the underlying logic to
simply ask whether the patient has a type of motor neurone disease and this would
automatically include all patients with related diagnoses such as primary lateral
sclerosis and pseudobulbar palsy.

SNOMED CT is not confined to diagnostic and procedural information. There
are hierarchies covering a wide range of medical terminology including anatom-
ical structures, pathology, occupations and ethnic origins. With local extensions
such as the NHS’ DM&D (dictionary of medicines and devices) these codes can
be used in any field that needs structured coded information.

Another advantage is support for synonyms. A distinct clinical concept can
and usually has multiple synonyms - for example Granulomatosis with poly-

angiitis was previously known as Wegener granulomatosis. With synonym sup-

20

port, a user entering an outdated or synonymous term would find the synonym and
see it mapped into the new modern preferred description of the term.

Within SNOMED CT, clinical terms are concepts, synonyms are descriptions
and the relationships between concepts are recorded as relationships. While seem-
ingly simple, as relationships themselves are defined by concepts (such as ‘IS-A’
as in ‘““Motor neurone disease—IS-A—Disorder of nervous system’) it means
that the relationship tree is infinitely extendable over time.

SNOMED CT is owned by the International Health Terminology Standards
Development Organisation (IHTSDO) and is an international terminology, with
the UK version managed by the UK Terminology Centre (UKTC) of the Health
and Social Care Information Centre (HSCIC). There are online training resources
provided by IHTSDO and the UKTC EI as well as a simple online SNOMED CT
browser]

I have developed an open-source terminology serverﬂ that provides fast free-
text search and navigation around the SNOMED CT hierarchy as well as provid-
ing semantic understanding for any concept, allowing client software to answer
questions like “does this patient have a type of granulomatous disease?”, “was
this patient born in Europe?” or even “is this drug a type of B-blocker?” . It
would answer yes to the first question simply by understanding the diseases that
the patient has been listed as having, answering ‘yes’ if a patient had sarcoidosis
and ‘no’ if they had multiple sclerosis. Similarly, it would respond with ‘yes’ if a
patient was recorded as being born in France but ‘no’ if they were born in Afgh-
anistan. SNOMED CT provides the logical relationships in order to drive such

computerised decision-making.

4.2 Information models

Each SNOMED CT concept, description and relationship has a unique and persist-
ent identifier that can be stored in a data store. Most clinical applications persist
information in a relational database and so a simple implementation may simply

store the identifier as a foreign key to the row that represents that entity. However,

“http://systems.hscic.gov.uk/data/uktc/training
*http://browser.ihtsdotools.org
“https://www.github.com/wardle/rsterminology

21

http://systems.hscic.gov.uk/data/uktc/training
http://browser.ihtsdotools.org
https://www.github.com/wardle/rsterminology

whilst these terms have meaning when used in isolation (e.g. storing the identifier
representing“myocardial infarction”), it is only when these terms are combined
together in a logical way as part of a larger data model, that true meaning can be
understood. It is analogous to definitions for individual words in a dictionary but
true expression results only when these words are combined into sentences and
paragraphs. As such, most concepts are only useful when considered within the
information model in which it is recorded.

The information model used in which SNOMED CT concepts are stored is
therefore critical to derive understanding from what can be inferred from the re-
cording of a concept. This is particularly important for a terminology such as
SNOMED CT in which terms may be recorded together to form a compositional
(post-coordinated) term such as “Family history of...” (281666001) and “Obesity”
(414916001) or out of convenience represented as a single SNOMED CT term
“Family history: Obesity” (160311006).

If SNOMED CT had not only defined a terminology but also a wider inform-
ation model then such compound pre-coordinated terms would be unnecessary
and the recording of “obesity” within a model defining a family history would
be sufficient. However, while compound pre-coordinated terms risk an explosion
of terms to cater for multiple combinations, they do make it easier for end-users
to find concepts that represent what they are trying to record and support work-
flows in which clinical terms are recorded in a relatively unstructured information
model, such as that used in primary care historically using Read codes. Of course,
SNOMED CT was developed as an amalgamation of SNOMED from the Col-
lege of American Pathologists and Read (Clinical Terms Version 3) codes with
the latter recorded prospectively and longitudinally in UK primary care systems
in a relatively unstructured format. There are advantages in SNOMED CT being
independent from the surrounding data model within which it is transmitted or
stored particularly as SNOMED CT terms generally reflect core concepts relating
to health, disease and the processes of care. As a result a range of models can be
used with SNOMED CT and similarly, different terminologies can be bound to a
model such as LOINC

SLOINC is an alternative terminology focused on tests, measurements and observations — see
https://loinc.org,

22

https://loinc.org

I generally recommend a highly structured approach to the storage of
SNOMED CT codes in which the information model in which they are stored en-
sures no uncertainty in interpretation and that to simplify subsequent analysis and
retrieval, compound pre-coordinated terms are decomposed into their components
are stored appropriately. As such, users may enter information via a highly struc-
tured workflow in which the context is evident as part of the user interface such as
recording family history or allergies or a less structured workflow in which terms
can be entered and decomposed and entered into a more structured information
model. Alternatively, an implementation may instead store the codes as entered
and deal with ensuring that a diagnostic term recorded in a family history model
is equivalent to the compound term.

To provide evidence to support a highly structured approach, I suggest con-
sidering how one might use SNOMED CT to record examination findings. While
there is a code for “supranuclear gaze palsy” (420675003) there is no compound
code to record that there is an absence of this examination finding. While one
could request an addition to SNOMED CT, it is much more appropriate to con-
sider examination findings in two categories, those found and those not found.
The recording of a lack of clinical sign is important in clinical practice as well as
for medico-legal reasons. As such, the information model in which this clinical
finding is recorded is critical in providing understanding. SNOMED CT does al-
low post-coordinated terms in which multiple terms are combined together to give
meaning. One possible way of representing the ‘lack of” a clinical finding is to
post-coordinate with a negation concept to form a compositional term but I advoc-
ate using a robust information model as a simpler method of expressing clinical
knowledge particularly when one considers how users are expected to record such
findings.

Example information models which can record SNOMED CT terms in context
are HL7 and openEHR. OpenEHR uses the term ‘archetype’ as a synonym for ‘in-
formation model’. The use of validated and published data structures support sub-
sequent interoperability between disparate systems which can process that model.
However, the use of a specific information model does not necessarily force the
use of that model as a format in which to store data, but may be used only as a

representation of data to be used for interoperability with other systems. Indeed, a

23

focus on a model of any form improves the potential for interoperability because
that model is likely to be an abstraction of real-life concepts and thus it becomes
possible to map from one information model to another.

However, even if two information models represent the same real-life concept
and they look superficially similar, the process of mapping can introduce ambi-
guity and potentially even errors, particularly if a data element is present in one
model but not in another. In addition, different terminologies may be used with an
information model in a process called ‘terminology binding” and so simply man-

dating a particular kind of information model does not guarantee interoperability.

43 HL7

Health Level Seven (HL7) is an international standards development organisation
that publishes standards for healthcare interoperabilityﬁ HL7 publish a range of
interoperability standards including HL7 V2, HL7 V3 and CDA, and the HL7
FHIR.

4.3.1 HL7V2

HL7 V2 refers to HL7’s currently most used health standard from HL7 first re-
leased in 1989 and deployed internationally[] It is fundamentally a messaging
standard and early versions focused on ‘ADT’ messages, messaging relating to
the admission, discharge and transfer of patients. Such messages are sent as ‘trig-
gers’ and therefore adopt a ‘push’ model of health interoperability. HL7 has grown
organically and iteratively over many years with an increasing number of message
types including those to record clinical observations and laboratory results for ex-
ample. The latest version is HL7 v2.6 which was approved as an ANSI standard
in 2007.

bsee http://www.hl7.org.uk
’see http://www.hl7.org/implement/standards/product_brief .cfm?product_id=
185|and http://www.hl7.org/about/FAQs/index.cfm?ref=nav

24

http://www.hl7.org.uk
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.hl7.org/about/FAQs/index.cfm?ref=nav

4.3.2 HL7 V3 and the RIM

HL7 V3 was developed from 1992 to define a Reference Information Model
(RIM) describing healthcare-related messages and trigger events relating to those
messages. The RIM defines an object-orientated model in which types are sub-
specialisms of a more generic type. For example, in the same way as bicycles and
cars are types of vehicles, a ‘Person’ is a type of a ‘Living Subject’ but veterinary
patients such as dogs and cats are represented as a ‘Non-person living subject’.
As in object-orientated programming languages, specialist models inherit attrib-
utes and behaviours from their more generic parent types.
The three core classes in HL7 RIM are ‘Act’, ‘Entity’ and ‘Role’:

Act An act is a record of something that has or will happen. This will usually
include what has been done, to whom, by whom, when, where and how and

possibly documenting why.

Entity An entity is a living or non-living thing such as a person, animal or organ-

isation.

Role A role represents a skill or competency of an Entity, such as patient, em-

ployee, place or organisation.

The HL7 V3 standard is large and complex and many healthcare organisations
with an existing infrastructure built using HL7 V2 have been reluctant to adopt

the newer standard so HL7 RIM is not used as much as HL7 V2 internationally.

4.3.3 HL7 V3 CDA

The HL7 V3 Clinical Document Architecture (CDA) defines a document-based
information model in which components of the HL7 V3 RIM is used as a header
together with a document body consisting of a mixture of unstructured and struc-
tured data. As I discussed in Section [3.4] a document-based architecture is an
appropriate abstraction of real-life processes and explicitly ensures that clinical
information is recorded together with its context; such a document can stand in

isolation and be understood by the reader. When contextual clues are removed,

25

interpretation of structured and unstructured information is potentially hazard-
ous. A document can be immutable once created and document lifecycle and
process management including creation, editing and repudiation can be modelled
in a straightforward manner.

There are three CDA levels:

CDA level one has a header and human-readable body usually in an unstructured

format such as free text or file types such as images or documents (e.g.
Adobe PDF).

CDA level two extends level one by including more structured data within the

body of the document.

CDA level three allows highly-structured data to be encoded at a high level of
granularity.

With the document paradigm limiting mismatch between model and real-life
(Section [3.5.1)), adoption of the CDA standard has been widespread internation-
ally. It is the most adopted HL7 V3 standardﬁ In addition, the different CDA
levels permit flexibility in the recording of unstructured and structured data, eas-
ing adoption of the standard. Such an approach permits implementers to use level
one of the HL'7 CDA to store relatively unstructured documents initially but evolve
over time to permit newer applications to store more structured information and

yet remain interoperable.

4.3.4 FHIR

FHIREI Fast Health Interoperability Resources, is a new framework created by
HL7 which uses modern web services over HTTP to create, edit and share modular
resources. Importantly, the HL7 FHIR standards are free to use without restriction
and focus on data standards and the implementation of those standards within
clinical systems.

The use of FHIR does not mandate that existing and new clinical systems use

FHIR standards to define their internal architecture or internal storage formats,

8see http://www.hl7.org/FHIR/comparison-cda.html
9see https://www.hl7.org/fhir/summary.html

26

http://www.hl7.org/FHIR/comparison-cda.html
https://www.hl7.org/fhir/summary.html

but the use of FHIR can provide an open and standard interface to permit inter-
operability between different systems created by different vendors. As such, an
application or service can provide access to data in an open and extensible format
by providing a FHIR server and consume different data as a FHIR client.

There are a range of FHIR frameworks including

Search within a resource, such as searching for a patient.

Operations on a resource EI, such as fetching an encounter record or processing

a message.

Documents representing a composition of other resources with a fixed presenta-

tion linked to context.
Messages to allow messages to be sent in response to a specific event.

Services to provide a representation of a service-orientated architecture within
healthcare[]

There is backwards-compatibility so that FHIR documents can contain HL7
V3 CDA documents. FHIR potentially improves the integration and interoperab-
ility between disparate systems. The standard uses open web standards over the
HTTP protocol and so development can be straightforward. However, FHIR is
still under active development at the time of writing and the current release is des-
ignated as a “draft standard for trial use”. As such, future versions of FHIR may

result in non-compatible future changes.

4.4 openEHR

openEHR is an open standard for the recording of health-related data maintained
by the OpenEHR foundation It defines a multi-level information model in

10see http://www.hl7.org/FHIR/implementation.html

HThese are in addition to the standard CREATE, READ, UPDATE and DELETE REST-based
interactions

25ee http://www.hl7.org/FHIR/services.html

Bsee http://openehr.org

27

http://www.hl7.org/FHIR/implementation.html
http://www.hl7.org/FHIR/services.html
http://openehr.org

which the core model (the ‘reference model’) does not include clinical informa-
tion but focuses on core generic abstractions and process. Archetypes represent
the clinical information model, with models created, edited and curated as part
of a ‘clinical knowledge manager’ (CKM). This multi-level modelling approach
means that health professionals can undertake clinical modelling independent of
the underlying implementation. In addition, small and re-usable domain models
can be aggregated into a ‘template’. For example, if a domain model contains
‘blood pressure’ and ‘heart rate’ then this model can be incorporated within a
larger ‘template’ representing an emergency unit admissionm

In addition, there is a new openEHR REST-based application programming
interface (API) which proposes to define standards to which an openEHR imple-
mentation should adhere. However, the development of these standards is still in

development and has not yet been finalised.

4.5 LOINC

LOINC is a freely available international standard for tests, measurements and
observationsE Although limited in scope, it has been adopted by HL7 as the
standard code system for laboratory results. In addition, there is a project to map
LOINC codes to SNOMED-CT and vice versa.

4see http://www.openehr.org/releases/AM/latest/docs/Overview/Overview.

html
Pgeehttps://loinc.org

28

http://www.openehr.org/releases/AM/latest/docs/Overview/Overview.html
http://www.openehr.org/releases/AM/latest/docs/Overview/Overview.html
https://loinc.org

5 Technical architecture

Software engineering, like all types of engineering, is complex and error-prone. In
order to tackle a problem, architects and engineers usually break down a problem
into smaller discrete tasks that can be performed sequentially or in parallel in order
to accomplish the final goal.

This section is aimed at clinicians and managers to provide a high-level un-
derstanding of the principles of architecture in information technology. As such,
it includes sufficient technology jargon to make the case for healthcare enterprise
software to adopt a multi-tier layered architecture built upon a service-orientated
design. I think it is important for clinicians involved in informatics to be aware of
the technical considerations of their design and to understand the building-blocks

of robust clinical information systems.

5.1 Have an overall vision but plan for change

Understanding of the final goal is critical in order to understand how to formulate
the steps required in order to reach that goal. In some domains, an understanding
of the whole of the problem domain is possible by individual team members, but
in many large engineering problems, whether it is building an electronic health
record or constructing a new hospital, different specialists are responsible for dif-
ferent aspects of the design and implementation and must work together to achieve
the final aim. In large complex systems, coordinating the work of multiple teams
becomes increasingly complex and time-consuming. For example, an electronic
patient record system may consist of separate systems, subsystems or applica-
tions in order to handle patient registration and demographics, laboratory results
or radiology requesting. The functionality of the whole therefore requires a num-
ber of different applications supporting these different clinical processes to work
together.

An overall vision must also carefully consider consider future functionality
in order that a given solution does not limit future developments. As such, even

when the initial scope of services is limited, consideration as to how future devel-

29

opments will occur and how they will be incorporated is vital in creating system

longevity.

5.2 The model-view-controller (MVC) design pattern; ensure

separation of concerns

A single application running on a single device, such as a word processing ap-
plication or an email client, will usually be carefully structured internally into
components with different tasks. Many modern applications use a design pat-
tern called the “model-view-controller” (MVC) pattern. This results in software
code in three distinct but related domains. The model reflects the data structures,
processes and business rules within the application. The view relates to the user
interface and how users interact with the application. Linking the two is the con-
troller layer which acts to manipulate and use the model and coordinate the view
layer to display and allow user interaction.

This separation of concerns is an important design pattern. At first sight, it
may seem to make solving the high-level problem of writing an application more
difficult. Indeed, for very small applications, it is frequently quicker to write what
is colloquially termed ‘spaghetti code’ in which logic relating to the business rules
and the user interface are intermingled. As an application grows however, the soft-
ware becomes increasingly difficult to understand and maintain. As business rules
are spread throughout different parts of the application, small changes in one mod-
ule result in untoward knock-on side-effects. A short-term gain in productivity is
made at the expense of more difficult ongoing maintenance and development.

An MVC pattern and ensuring separation of concerns can be used within
a single application or can be used in large-scale enterprises to coordinate and
structure multiple applications, middleware and core services together as a uni-
fied whole.

5.3 Adopt test-driven development

An important part of software development is proving that a system does what it

is supposed to do; that it is ‘correct’. This may sound simple, but many projects

30

face situations in which the problems that are to be solved change over time.
Such issues make it important to ensure that specific projects are limited in scope,
with well-defined requirements and interfaces with other systems. Under such
circumstances, a project can undergo a range of automatic tests to ensure that
it meets and continues to meet expectations. Such tests are commonly called
‘unit tests” when a specific unit of functionality is being tested, ‘integration tests’
when a project’s integration with other systems is under test, ‘functional’ tests
when assessing the results of a number of systems against what is ‘correct’ and
‘acceptance tests’ when preparing software for deployment.

‘Test-driven development’ is a methodology in which development starts with
the tests that will be used to test that project’s functionality even before imple-
menting that functionality.

In large code-bases, small changes can have unintended consequences and unit
tests can capture such changes automatically. For example, in my SNOMED CT
terminology server, I have incorporated the Dictionary of Medicines and Devices
(DM&D) which includes data on pharmacological and other products available
within the United Kingdom. I wrote unit and functional tests to test mapping a
virtual medicinal product to actual medicinal products and to prove that the soft-
ware was able to deduce the available routes for any specific drug. A small change
to optimise the software and add new functionality unexpectedly affected the lo-
gic behind those deductions and this was fortunately picked up by the automated
test suite during the build process.

When there is poor separation of concerns and little regard to architecture,
automated testing is difficult. Important business logic is mixed-in with other
functionality such as that relating to the user interactions and such software is
difficult to test. A product may perform so many different pieces of functionality
that it is difficult to have confidence that it and its integration with other systems is
‘correct’. Importantly, when user interactions are required to test important com-
ponents of software, automated testing is much more difficult as test harnesses
need to mimic user interactions instead of simply proving that a piece of logic
gives the intended results when give a particular test of inputs. An example is
shown in Figure [3] in which a monolithic application with several different im-

portant pieces of functionality, spanning user interaction, business logic and in-

31

tegration with other systems is tested. How can we be confident that the product
performs ‘correctly’? In fact, this is a common problem in most organisations that
focus on procuring and developing ‘systems’ to solve business problems. They
are developed and integrated at a level which makes it difficult to be confident that

they are fundamentally ‘correct’.

Automated testing

\

Manual testing

/

User Business

interaction logic
Application
Business .
. Integration
logic
Other Other Other Other Other
systems systems systems systems systems
S — S — S — S —

Figure 3: Testing a monolithic, vertically-integrated, poorly structured application.

A different approach is shown in Figures[dand[5]in which applications and ser-
vices are organised in a layered approach. Here it is possible to test each discrete
module in isolation and when integrated. Important integrations and interfaces can
be tested using ‘mocked’ services, in which a lightweight facade is substituted for

an external system allowing testing controlling for external dependencies.

32

User interface

Application layer

Domain / model layer (middleware)

Core national services

Figure 4: A multiple tier layered architecture model

33

User User User User
interface interface interface interface
Application layer

Process 1 | | Process 2 | | Process (x)... |

\/

Domain model layer

Model 1 | | Modet2 | | Model(x.. |

\/

Service 1 Service 2 Service 3
e o — N A - — . i
] [}) [}] [}] [}
] T ts [}] [}] [}] [}
e] e) o] | o]|
: : : :] * [} I [}

))) [}
| y 0o P i i
: User - i - i
: interface O Process « o Domain 1 1 :
] [}] [} I [}] [}
| . . . |

\/

: \ {1 \ ¢ \ ! i
| Mocked {1 Mocked { 1 [Mocked {3 Sorvi :
! | application | | ! Domain {1 Service {3 ervice i
: layer 1 layer ! layer ! 1 :
] [} [l 1 I [} 1 |

Figure 5: Tested a structured layered architecture

34

5.4 Favour automated testing and deployment pipelines with

continuous delivery

During the development of a software application service, it can be tested to de-
termine whether it passes those tests and fulfils the ‘contract’ inherent in its im-
plementation. However, as outlined in Section [5.3] test driven development can
test individual software components and their wider integration. Robust and auto-
mated integration tests requires automated software build tools to take the com-
puter code and turn it into software together with automated deployment and then
testing. If these processes require manual user intervention in which developers
‘hand-off” their code to the deployment team then it is difficult to have a rapid
test-build-test lifecycle. In many organisations, developers finish their code and
perform a ‘release’. This is subsequently deployed into a test environment in
which a range of automated and manual tests can be performed, including those
of the software itself and the user interaction. This quality assurance cycle can
take weeks.

Instead, automated pipelines are now available in which software components
may be developed and tested in isolation, with build processes subsequently auto-
matically deploying those products into a test environment which has been pre-
configured. An example of this approach is that of the Dockelm system which
isolates software components into lightweight virtualised environments with a de-
clarative model describing how those software components are put together for
testing and deployment.

Continuous delivery means deployment of system applications and services
is routine and straightforward resulting in development, testing and integration
occurring continuously after even small changes rather than waiting for a ‘code
freeze’ and then entering each stage manually and laboriously as in conventional

deployments.

l6see https://www.docker. com

35

https://www.docker.com

5.5 Use a layered structure within applications

It is possible to adopt a layered organisation within a single code-base. This
makes sense for smaller applications in which, although components are them-
selves loosely-coupled, a component is used only within that single application.
It can be developed and integrated into a larger code-base either at runtime via a
dynamic library or at compile-time and yet be tested in isolation.

However, for large enterprises in which different components may be used
within multiple applications, multiple business processes and contexts, it makes
sense to allow components to be deployed in isolation and to be used across a
network in a ‘distributed’ fashion. For example, in my SNOMED CT service, I
originally embedded the functionality within a single application but as that ap-
plication was built using a layered architectural approach, when I needed to allow
other applications to leverage that same functionality, it was trivial to extract that
SNOMED CT service into its own standalone service.

There are a range of advantages and disadvantages to both approaches. Em-
bedding functionality within a larger application makes sense for smaller pieces
of shared code and has no overhead relating to the exchange of information over
a network; instead as components share the same memory space within the same
application, data exchange is very fast. For large components, it is usually more
appropriate to create a standalone service that can be used across the network by a
variety of client applications. In the ‘distributed’ model, it is possible to optimise
by caching results and replicate a single service to create highly-available robust

systems less vulnerable to failure.

5.6 Use loose coupling between components; design by con-

tract

An important facet of the layered approach is the way different modules are
coupled together. Tightly coupled components are difficult to develop and test
in isolation; developers need understanding of the consequences of changes in
one component on another whereas in loosely-coupled components, an individual

component has limited but well-defined exposure to other components so that it is

36

possible to put the component within a test harness and exercise the system inde-
pendently from the whole. Consider formalising a coupling between components
with a two-step process in which: 1. a formalised contract is written provide the
specifications for a component and its interactions 2. a test-harness is written in
order to demonstrate that a component meets its specifications include its interac-
tions with other systems

Such loose-coupling ensures that clients of that component do not necessarily
need to know how a component achieves its outcome, only that, given the specific-
ations in the contract agreed, a component will provide the outcome agreed. This
results in components that act as ‘black-boxes’ as in Figure[6|in which a particular

business activity is performed within a self-contained component.

Other
underlying
systems

> Input

Other
underlying
systems

Other
underlying
systems
e —

Other
underlying
systems
[Fr—

Output Other

underlying
systems

Validation
by automated Design-by-
testing contract

System service
(Black box)

Y

interface

Figure 6: Design-by-contract, loosely-coupled services.

Decoupling functionality allows services to be develop and evolve at differ-
ent speeds. In addition, decoupling means that services can be deployed flexibly
to suit business requirements. For example, a service which depends on a high-

performance subsystem may embed that system within its own application to en-

37

sure adequate performance and reduce the overhead of communication over the

network.

5.7 Adopt a service-orientated architecture

e g Proprietary
o8 commercial
‘8‘.§ service
= C
/ &< (Vendor A)
, 8| Vendor-neutral
Enterprise | ® :
svstom > T service
Y = (Black box)
\ e g Proprietary
o8 commercial
§.§ service
- C
&= (Vendor B)

Figure 7: Encapsulation of services within a service-orientated architecture.

A service-orientated architecture (SOA) is a formal specification for the provi-
sion of loosely-coupled of services as defined in Section[5.6] Service-orientation
is a way of thinking in terms of services and service-based development and the

outcomes of services in which a servic

1. Is a logical representation of a repeatable business activity that has a spe-
cified outcome (e.g., check customer credit, provide weather data, consol-

idate drilling reports)

2. Is self-contained

http://www.opengroup.org/soa/source-book/soa/soa.htm, accessed 10th Novem-
ber 2016

38

http://www.opengroup.org/soa/source-book/soa/soa.htm

3. May be composed of other services
4. Is a “black box” to consumers of the service

An important element of a SOA is the encapsulation of possibly complex beha-
viour behind a well-defined interface. It offers the potential to completely replace
large parts of an enterprise application without change to other parts of the ap-
plication. Such encapsulation also results in vendor-neutral solutions not tied to a
single commercial solution. For example, if the specifications for a SNOMED CT
service are well-defined, then a range of commercial solutions may be encapsu-
lated by a vendor-neutral layer which handles a switch from one vendor to another.
Such a model is shown in Figure [/ in which a solution from Vendor A could be
switched to a solution from Vendor B because both services are encapsulated by
a vendor-neutral interface providing services to the rest of the enterprise. Such an
interface may adopt an international standard such as HL7’s FHIR (Section4.3.4)).

5.8 Use a layered architecture with services

As services may themselves encapsulate other services, then services naturally
adopt a layered structure in which high-level services use lower-level services.
Low-level services may frequently be generic pieces of functionality not neces-
sarily used only within healthcare, but provide ‘computing services’ such as data
storage, replication or messaging. High-level services will leverage such low-level
services in order to perform their functions, which will usually be more tied into
the processes of healthcare and much less generic. For example, one might have a
demographic service that matches a patient based on a range of identifiers. In NHS
Wales, this service is called the “enterprise master patient index (EMPI)” which
currently is provided by the IBM Initiate platform, a generic service that is used
in a wide-range of industries such as banking, security and consumer-goodﬂ
However, while it might be feasible to expose the interface to this service to sys-
tems across the enterprise, there are important reasons why it would be better to

encapsulate this service with a vendor-neutral service:

Bhttp://www.ibm.com/support/knowledgecenter/SSWSRI_10.1.0/com.ibm.

mdshs.hubover.doc/topics/c_hubover_overview.html, accessed 10th November
2016

39

http://www.ibm.com/support/knowledgecenter/SSWSR9_10.1.0/com.ibm.mdshs.hubover.doc/topics/c_hubover_overview.html
http://www.ibm.com/support/knowledgecenter/SSWSR9_10.1.0/com.ibm.mdshs.hubover.doc/topics/c_hubover_overview.html

1. The commercial solution may need to be replaced if a vendor no longer
actively maintains or supports their software. If a vendor-neutral encapsu-
lation is provided, then no changes in other systems may be necessary if the

service is replaced with another.

2. Additional business-logic may need to be performed when client applica-
tions perform patient demographic searches, such as recording an audit trail
or supplying additional contextual clues to the underlying service based on

business rules and processes.

Higher-level services frequently deal with a concepts at a higher-level of ab-

straction than lower levels.

5.9 Whois in control in a layered architecture?

It is important to consider how to partition and encapsulate services within a
layered architecture. Low-level systems should not have knowledge about the
software and services that use their functionality. Higher-level services under-
stand and drive lower-level services but themselves do not control the services at
a higher-level than themselves.

For example, a service which provides functionality to allow users to sign-up
for a mailing list may consist of two user applications, one web-based and one
running on a mobile device, a sign-up service that both user facing application
use, as well as a business model and data storage layer beneath that. It is easy to
see how a user-facing application may drive and control the sign-up service. But
what happens when a service at a lower-level needs to communicate something
to a higher-level? Traditionally, other mechanisms are used such as callbacks or
observers, in which high-level systems register that they wish to be informed of
progress or results in a lower-level subsystem and that system itself knows only

enough to call that ‘callback’ or send a message to that observer.

5.10 Model process and not simply data

As I wrote in Section [3.4] it is important to model not only the data relating to

healthcare but the processes as well. Processes and rules are liable to change

40

more frequently than data and will tend to vary between departments or organ-
isations. Modelling process allows these differences to be explicitly declared and
accounting for in user-facing applications.

It is tempting to ‘hard-code’ business logic into applications and services.
However, it then becomes more difficult to understand or indeed change that lo-
gic in the future to meet changing requirements. Therefore, many enterprises use
rule-engines to create a declarative model to shape the behaviour of software. As
such, the behaviour is defined by logic rather than a set of imperative commands
performed sequentially. A rules—engine@ is a generic way of expressing business
rules and can be used in a wide variety of industries particularly in environments
in which business rules change over time. In this way, a rules engine encapsulates
the business logic for an enterprise system allowing a separation of concerns. Al-
ternatively, business rules can be provided by high-level enterprise services that
may leverage a rules-engine internally but also enforce business rules and process

dynamically based on other contextual clues.

5.11 Favour immutability of data, but understand that there is

no one ‘truth’

Immutability refers to an approach to software engineering in which data are un-
changeable. Such an approach is particularly suitable when considering medical
records and processes. Indeed, from a medico-legal perspective, all data should
be regarded as immutable as it is usually necessary to be able to view the state of
the record at any point in time.

Many authors believe that supporting an audit trail is sufficient to deal with
changes to data. For example, one approach to the recording of diagnoses or
allergies is a canonical model in which users may create, edit or remove allergies.
Combine that with an audit trail and it is possible to show the current state of that
model as well as look though a history of the changes to identify who did what
and when.

However, there is a mismatch between this approach and what happens in

real-life (see Section [3.5.1)) as most clinicians would not seek to share a single

19see Drools (http://www.drools.org) as an example

41

http://www.drools.org

page between all services and expect it to be sufficient for their needs. What is
considered a ‘diagnosis’ for an oncologist may be different to that of a differ-
ent medical specialty as diagnosis is a much more complicated concept than one
might initially think and is dependent on context. A more detailed analysis of
how to model diagnosis is shown in Section [8.2] but the essential message is that
providing an audit trail does not magically make a data model usable by multiple
health professionals over time in the care of a single patient.

For example, a diagnosis of ‘angina’ made by a cardiologist as part of an epis-
ode of care in which the patient undergoes an elective coronary angiogram which
shows diffuse coronary artery disease is fundamentally different to a diagnosis
made by a non-specialist on the basis of a history of chest pain.

Instead, considering all data to be immutable after original creation forces an
approach in which clinical modellers and information technology experts adopt a
transactional document model. Data can be updated but as a result of additional
processes in which old data are deprecated and replaced with a new version of
the ‘truth’. The benefits of such a model are demonstrated in Section [8.4] while a
mutable model of a prescription chart has unintended and potentially devastating
consequences to patient safety. In addition, immutable data can be persisted and
made available across a distributed enterprise using a unique resource identifier
that is guaranteed to not change. It is of course possible to make changes to data
but such changes must be modelled as a process of change and not simply changes
to a canonical source of the ‘truth’. There is no one ‘truth’ in medicine, but an

ever-changing version of reality fundamentally dependent on context and opinion.

5.12 Make services idempotent

A service that is idempotent can receive the same call or request repeatedly while
producing the same result. When combined with an information model predic-
ated upon permanent resource locators that reflect immutable data, idempotency
can make systems reliable and more correct. For example, a service providing
a centralised store of clinical documents might allow other services to ‘send’ it
clinical documents. If, for example due to network latency issues or user error,

client software sends the same document twice, it should not create a duplicate

42

document. In order to achieve services that are idempotent, frequently client soft-
ware will need to supply a fixed, permanent unique identifier for the request so
that services can match that document with the previous version and replace that

version rather than create a duplicate.

5.13 Adopt uniform resource identifiers for access to resources

A uniform resource identifier (URI) is a unique identifier for a particular resource.
Combined with a service that can resolve such identifiers and obtain a representa-
tion of that source, a URI allows services to link to resources in a safe, permanent

and future-proof way.

5.14 Are there exceptions to the use of a layered architecture?

Most health enterprises consist of large vertically-integrated applications which
provide functions to interact with users, apply business rules and processes as
well storing and retrieving health data. Examples of such systems include exist-
ing systems used in general practice and legacy hospital-based systems but also
include newly procured systems such as the new Welsh Emergency Department
System (WEDS) and the new Community Clinical Information System in NHS
Wales.

For legacy software, such systems must be brought into the national architec-
ture in order to ensure that we do not create ‘data silos’ in which health data cre-
ated in one system is not made available to other systems. However, it is difficult
to justify the ongoing development of similar vertically-integrated applications in
the future. It is possible to stipulate a robust interoperability and standards frame-
work to try to link these different systems together. However, such an approach
does not magically result in scalable and efficient clinical systems. As shown
in Figure [§] integrating multiple systems can fail when a large number of differ-
ent systems must interoperate simply as a result of requiring so many interfaces
between systems.

In some enterprises, architects have mandated the use of a health information
exchange (HIE) which acts to exchange information between vertically-integrated

applications in different organisations (Figure 9). Such an approach can be useful

43

Application 1 «— |

PE— Application 3
Application 2

Application 5 Application 4

Application 6 (g———* Application 7 ‘é‘k

Application 8

Figure 8: Interoperability between systems when there are multiple systems.

Monolithic Health information Monolithic
application exchange application

Y

A

Figure 9: Connecting systems using a health information exchange model.

44

when one has a number of legacy applications that must be integrated within a
wider enterprise but like in Figure [§] does not scale with multiple systems and
services.

It is therefore more appropriate to adopt a layered architecture in which legacy
vertically-integrated application must inter-operate (Figure). Within each layer,

services can be horizontally-integrated.

5.15 Push vs. pull

‘Push’ and ‘pull’ are two techniques for the transmission of information from
one module, system, application or layer. Traditionally, many healthcare systems
use ‘push’ which means that something happens in one system and a message is
‘pushed’ to another system which needs to deal with that message and perhaps
update its own internal state. This is commonly used in HL7 in which messages
regarding admissions, discharges and transfers (ADT) are probably the most com-
mon. ‘Push’ therefore has an advantage in that it is widely used within existing
healthcare software. However, the historic use of ‘push’ is a reflection of the need
to link together many vertically-integrated applications within a single enterprise.

‘Push’ based systems usually use some form of messaging platform which
allows messages to be sent asynchronously with varying guarantees that a message
will be received and with received messages populating a stack which can be
duly processed by receiving applications. As such, that receiving application must
decide whether to discard the message or deal with it at the point it is received.

A ‘pull” approach means that one system requests information from another,
rather than being ‘pushed’ to it. Modern approaches such as the ‘Fast Health-
care Interoperability Resources’ (FHIR) adopt a mixture of both ‘push’ and ‘pull’
paradigms.

At the core infrastructure layer, it makes sense to continue to use a ‘push’ ap-
proach, particularly when dealing with legacy systems. This low-level messaging
is a reasonable way for the horizontal integration of systems at the infrastructure
layer of a layered architecture. However, most clinical systems do not wish to
answer questions like “send me a HL7 message when a patient is admitted”, but

instead wish to ask “who is in bed 9 on ward 5?7”. Notifications such as “let me

45

know when a patient is admitted on ward 5” might be needed, but this can be
achieved without necessarily resorting to low-level messaging. At higher levels
of the layered architecture, software must deal with higher levels of abstraction
and do not necessarily need to know how the underlying software has arrived at
that status. This is a fundamental characteristic of a layered approach and is an
illustration of an important software development technique of developing to an
interface and not an implementation. The underlying implementation may change
in the future, but software at a higher level of abstraction does not need to know
or indeed be changed.

A ‘push’ approach is acceptable for simple enterprises but when one wishes
to ask more complex queries relating to dynamic changing state, then a ‘pull’
approach is more sensible. For example, within NHS Wales, because laboratory
results are sent from the laboratory information management system (LIMS) using
‘push’ messaging, investigation results are not only stored in a national repository
but other applications also need to store those results so that they can be analysed
over time. For example, this occurs within some individual health boards in Wales
as well as dedicated specialty-specific software such as the VitalData system used
in nephrology. However, such systems cannot analyse trends for tests performed
before that system started receiving and storing messages about that patient. In
addition, when a message is received, how can that information be integrated with
other information such as diagnostic and treatment data, particularly if a ‘push’
model is adopted for the record of that type of information.

The final problem with the ‘push’ approach is information governance. A
system cannot vouch what recipient systems are able to do with the information
that is sent to them, and there is no contextual information to help make such a
decision. With a ‘pull’ model, both systems have a say in whether information
exchange can take place, with a service acting on behalf of a user able to provide
important context such as the setting for that encounter (e.g. a clinical encounter in
an outpatient clinic) and who that user is (e.g. the user is a consultant neurologist
who is linked to the patient by virtue of their involvement in multiple sclerosis
services), and the service from which data is ‘pulled’ able to check and validate

the request before returning the resource or information required.

46

5.16 An open platform for the health enterprise

After considering the issues raised in this section, the final conclusion must be
that we need to create an open “platform’” on which clinical applications may run.
Such a platform needs to consist of a range of information and process mod-
els that reflect healthcare and its processes as outlined in Section [3| Importantly,
there needs to be a contextual vocabulary reflecting the nouns on which clinical
processes are undertaken. Such context reflects the higher-order abstract concepts
of healthcare including what is conceptually considered to be a ‘user’, a ‘patient’,
an ‘organisation’, a ‘clinic’, a ‘specialty’, a ‘clinical pathway’, or a ‘clinical ser-
vice’. Such concepts must exist and be modelled across different systems in order
to achieve robust interoperability. An appropriate information model encapsulates
these nouns combined with a multi-tier service orientated architecture creates a
platform on which applications can run and interoperate with other systems.

The “platform” thus becomes both a medical record and manages the work-
flow and processes relating to that record. A permanent medical record stores
information about what has been done, to whom, by whom, in the many processes
of healthcare. Such a record needs to make use of appropriate data standards, ter-
minology and other concepts necessary for interoperability. This data layer acts as
a platform on which workflow and clinical processes run. Workflow and process
management supports the day-to-day business of health organisations in caring
for patients. Such a “platform” can evolve over time, initially acting as a health
information exchange (see Section for legacy existing software to provide
interoperability but act as a foundation for new and modern applications in the
future.

As such, an immediate requirement for any such platform is an understanding
of the levels of interoperability available to existing and new software. I suggest
the development of an accredited interoperability framework in which software
can be assessed and graded to ensure that future procurements are compatible
with the platform. It is perhaps possible to define levels of interoperability graded
I-1V, in which highly interoperable application are graded the highest.

An example of an interoperability framework is shown in Table [2]

47

Category and level Requirements

Information model - how are data stored and exposes to the national platform

Level 1 Uses own proprietary data storage with limited
proprietary API

Level 2 Uses own proprietary data storage with mixture of
proprietary and open interoperability API

Level 3 Uses own open standard structured model with
open API

Level 4 Uses national platform provided, structured data
model

Fixtures - data representing organisations, users and other ‘fixed’ data

Level 1 Limited use of national reference data set

Level 2 Uses mixture of own and national reference data
set

Level 3 Extensive use of national reference data set

Level 4 Uses national reference data set

Terminology - terminology used within the information model

Level 1 Minimal use of SNOMED CT or another termino-
logies

Level 2 Moderate use of SNOMED CT or another open
terminology

Level 3 Extensive use

Level 4 Uses SNOMED CT and other terminologies as lin-

gua franca bound to information model

Table 2: An example of interoperability scoring for services and applications. The in-
formation model refers to how data are stored and exposes to the national platform. Fix-
tures refers to the data representing organisations, users and other relatively ‘fixed” data.
Terminology refers to the terminology used within the information model.

A platform would consist of a variety of reusable components at all levels of
the multi-tier architecture. As an example, the user interface layer might consist
of components which can be linked dynamically into other application to allow

users to list, search and view clinical documents and the application layer may

48

consist of programming interfaces which allow other software working at that
layer to themselves programmatically list, search, filter and fetch clinical docu-

ments. Thus, software becomes horizontally integrated with the platform.

5.17 Data analytics and an enterprise-wide warehouse

With a robust platform built using open data standards, it is possible to routinely
analyse group-level patient data to monitor service performance. Frequently, data
from multiple systems can be aggregated and linked within a separate reporting
system such as a data warehouse. It is important that data analytics can occur in
a timely way in order to satisfy the requirements as outlined in Section but
many reports need to be embedded within clinical processes, such as a list of pa-
tients waiting or who have been discharged. While a separate data warehouse has
advantages for off-line processing, many analytics should be available to clinical

staff in real-time.

5.18 User-facing applications

I feel very strongly that a single application will not ever meet the demands of
clinical staff. Indeed, most organisations run a variety of different applications to
suit different departments and different workflows. For example, most emergency
unit applications support the workflow of an emergency department showing staff
who is waiting and how long they have been waiting. Should all user-facing func-
tionality and interactions sit within a single application or be broken down into
discrete context-specific applications?

Of all layers of a multi-tier layered architecture, it is the user-facing applic-
ations that have the greatest need to reflect clinical processes and workflow and
will therefore need to integrate and show different information at different times.
Indeed, most hospital specialists will have different needs depending on their spe-
cialism and my own experience of patient-level disease-specific dashboards is that
a dashboard summarising information for a patient with motor neurone disease
will be very different to that with chronic kidney disease.

In fact, a platform approach means that decisions on how to plan and develop

a user-facing application (or applications) can be made and can be changed over

49

time. I believe that user-facing applications should be lightweight, workflow and
process-bound, easy to develop because most of their complex functionality is
already provided by other services within the platform. In this way, application
development can be low-risk and low-cost and can work to innovate. Imagine an
NHS hack day in which applications are developed that take patient data and per-
form analysis over time of changes in renal function for example or bring together
ambulatory data captured from patient’s own devices with treatment and inter-
ventional data such as levodopa dose and deep brain stimulation in Parkinson’s
disease.

The problem with multiple applications is that historically applications have
been vertically integrated, including layers supporting user interaction, business
logic and data storage and so it has been difficult to integrate these applications
into the wider enterprise, particularly as most do not adopt modern data standards.
However, these issues are minimised when user-facing applications are a slim,
lightweight wrapper around core pieces of infrastructure which actually do the
hard work.

However, just because it is possible to have multiple applications, it doesn’t
necessarily preclude building a main ‘portal” which provides access to the ‘plat-
form’ in a generic but comprehensive manner. Such a portal may provide only
read-only access to many important services; such a portal would not aim to re-
place a theatre management service but might need to present data from such a

service in patient or aggregated views.

50

6 Organisational structures

6.1 Bind organisational structure to the technical architecture

In Section [3] I discussed the interdependencies between requirements gathering,
health data and process models and implementation and concluded that the most
appropriate technical architecture to support such a methodology is a multi-tier
layered service-orientated platform architecture (see Section [5). As such, I con-
cluded that the models and the implementation need to be kept tightly bound. As
such, the organisational structures to create, support and continuously improve the
software underlying such an architecture must reflect that architectural structure.

As such, I advocate small teams with responsibility for single services with
limited scope and formal contracts relating to the interfaces between teams. Such
contracts should apply not only to the software interfaces between teams (see
Section [5.6) but to the interface between the team members themselves in terms
of working relationships and contact.

However, as I explained in Section [5.1] an understanding of the overall design
goal is critical to shape the overall infrastructure and high-level functional require-
ments. Clinicians and software developers, managers and architects must work to
shape and guide evolution of the overall infrastructure. Such a team, organised
as an architecture board, must represent a range of the organisations that have
applications running on the national architecture. In addition, they should have

oversight of projects that make up a “platform”.

6.2 Strategy, procurement and planning

There must also be organisational structures to support the process of procure-
ment to ensure software products meet guidelines on interoperability and data
standards allowing assessment and grading according to the established interop-
erability framework (see Section |5.16).

In many projects, a group of enthusiasts apply for money for a particular pro-
ject, are successful in their application and then are faced with the development
and roll-out of that product. Many such projects, both research and clinical, adopt

this approach. In these situations, the NHS Wales informatics services and indi-

51

vidual health boards need to integrate that project into the wider architecture. A
more formal model of procurement must be instituted in which all procurements
are graded on their level of interoperability with the national platform. In order to
successful host innovative projects, NHS Wales and the informatics service must
be involved at an early stage in health technology bids with a dedicated team in
place to ensure that an appropriate focus on data standards and interoperability.

All high-value projects must be signed-off by a national architecture board.

6.3 Clinical informatics, career development and skills

In Section 3] I discussed the importance of a team structure bringing together ex-
pertise in healthcare, informatics, data standards and technology. In order to meet
those demands, any programme of work to develop clinical information systems
needs to consider how to recruit, retain and professionalise those involved. Im-
portantly, clinical staff must be given protected time in order to be involved and

shape development programmes across the platform.

52

7 Conclusions for NHS Wales

7.1 Overview

I began by explaining the importance of the medical record (Section [2)) and how
it is vital to model both data and process within healthcare in creating of clinical
information systems (Section [3)) as well use the appropriate data standards (Sec-
tion). I extended this discussion to demonstrate how this approach should drive
a scalable, multi-tied layered technical architecture (Section [5) and that such an
architecture needs a corresponding organisational structure in order to manage it
safely (Section [6)).

The vision for Wales must take into account an appropriate information tech-
nology platform that will support the routine capture of clinical data for use in
day-to-day care, service management and clinical governance. It must provide
sufficient flexibility to support the data flows shown in Figure [2]in which informa-
tion captured by clinicians can be integrated with the results of biological data,
patient-reported measures and patient-help ambulatory device data to improve
clinical care.

A single user-facing application will not be sufficient to support these use-
cases, and I recommend multiple applications focused on specific processes or
workflow that integrate with a national platform. It is appropriate for an emer-
gency unit application to be developed for an emergency unit, and a theatre system
developed for the operating theatre. Indeed, I imagine mobile devices with a spe-
cific phlebotomy module leveraging the national platform, a simple lightweight
client application supporting a single workflow on a busy ward so that staff know
from who and where to take blood samples. We should not be afraid of multiple
applications except when they are not interoperable; in that case multiple user-
facing applications risk creating silos of data which cannot be used to support and
improve patient care.

However, an open ‘platform’-based approach does not preclude the ongoing
development of a single “Welsh Clinical Portal” offering a generic approach to

the retrieval of individual patient-level data. Indeed, a single portal build upon a

53

robust set of loosely-coupled interoperable components will be a safer and more

robust portal than one that has evolved organically.

7.2 Suggested actions

I suggest the following actions for NHS Wales:

e Create an interoperability framework in which there are detailed specific-
ations for a range of levels of interoperability. Compatibility with such a
framework needs to be mandated for procurements and development of ap-
plications with NHS Wales. I suggest a detailed evaluation of the FHIR
HL7 standard and consider implementing as a priority a FHIR interface for
the eMPI to provide a vendor-neutral view of an individual patient as part

of that evaluation.

e Break-up the business logic and services within the existing Welsh Clinical
Portal software and make the user interface layer a simple wrapper around
some core services. Allow those services to be used by other applications
including those developed by health boards, in order to ensure a safe mi-
gration to a new national platform in NHS Wales. The development plan
for WCP 4.0 should focus on removing all business logic from the user
interface layers and adopt a service-orientated approach to the platform’s

functionality.

e Evaluate technologies in order to create a national data platform comprising
a robust information model at two levels: that of a reference model which
are hardcoded and act as the fixtures and scaffolding into which more flex-

ible runtime derived models are stored, such as in openEHR.

e Ensure organisational structures are in place to support a service-based ar-
chitectural platform and to sign-off health technology projects within Wales
to ensure that they meet the standards stipulating within the new interop-
erability framework. Ensure that there are clear lines of responsibility and

ownership for planned developments.

54

e Mock versions of the core NHS Wales services should be made available
via the Internet in order to showcase the Welsh open architecture and en-
courage innovation. Applications built using the mocked services could
subsequently be easily transferred into the live environment, subject to ap-
proval. NHS Wales should sponsor NHS ‘hack days’ in which technical and
clinical and information technology professionals can come together to cre-
ate innovation small applications integrating with a mock-up of the national

architecture.

e Create a national architecture board combining skills from clinicians, in-
formaticians, data standards experts and technology leads to oversee a new
national platform built as a layered multi-tier loosely-coupled architecture
with a focus on clinical modelling and data standards. Define the scope
of nationally-provided applications and the national portal to core generic
functionality but ensure that artefacts created in other systems are viewable

as part of the patient record in an appropriate context.

e Create a national informatics clinical informatics fellowship scheme and in-
formatics academy within NHS Wales to recruit, retain and educate a cadre
of clinicians and information technology professionals in planning and de-

livering information technology for healthcare in Wales.

Mark Wardle
February 2017

55

8 Worked examples

8.1 Emergency unit systems
8.1.1 Introduction

Emergency unit (EU) systems are specialised information systems that are de-
signed to support the processes of care in the EU. As such, their design is tightly
bound to those processes of care including the prioritisation of patients and man-
aging a service that, by its very nature, is unscheduled and works under pressure.
In particular, the 4-hour waiting times target emphasises recognition that patients
need to be seen in a timely fashion.

Most existing EU systems are principally focused on the managing the service
rather than supporting direct patient care. For example, current EU systems within
Cardiff and Vale University Health Board show the patients that are waiting and
those that have been seen supporting the administration of the service with the
generation of discharge summaries. However, documentation of clinical assess-
ments is still paper-based. Large amounts of data are recorded but they are not
recorded in an electronic system making it difficult to make use of these data for
direct patient care or management of the service.

What is the most appropriate way of implementing effective information sys-
tems to support the EU? The current plan within NHS Wales is the procurement
and deployment of a single product, EMIS’ Symphony produc@ and deployment
is ongoing within Abertawe Bro Morgannwg Health Board. Inherent in this pro-
curement is acknowledgement that the EU is a specialist environment with unique
requirements relating to process and workflow.

This approach seems reasonable but it is important to recognise that two large
scale design processes must be undertaken in order to successfully deploy and in-
tegrate a new EU system. The first is the design and configuration of the system
itself in order to suit an individual department. The second is an understanding
of the interfaces between a new EU system and other components of the health
enterprise platform. Indeed, product integration is frequently highly complex and

if integration requires interfaces to multiple disparate systems within an organ-

2see https://www.emishealth.com/products/symphony/

56

https://www.emishealth.com/products/symphony/

isation to make it work effectively, then implementation can be error-prone and
time-consuming.

As an EU application will contain multiple layers of functionality including a
user interface layer, a business logic layer and its own data persistence layer, each
of these layers will need some degree of interoperability with a national platform.
For example, at the user interface level, users might need to be able to switch to
nationally provided applications from within the EU application. At the business
logic layer, the EU application will need to interoperate with a range of local and
national systems in order to handle patient demographics, notify of an attendance,
publish clinical document(s), request investigations and make data available for

offline processing for secondary uses.

8.1.2 Analyse process, workflow and data requirements; nesting of data

As such, the procurement of an EU system must begin with a detailed analysis of
process, workflow and data as well as an understanding of the legislative require-
ments for secondary use of information including an understanding of the 4-hour
wait national target.

At an information model point of view, healthcare data is fundamentally
fractal. A fractal describes structures in which patterns recur at progressively
smaller scales. For instance, while a large amount of medical and nursing care
occurs within an EU, for most clinical staff, a summary of that episode will be
sufficient. An information model that adopts a nested design allows detailed clin-
ical data to exist held within an appropriate context. A similar paradigm works for
day case attendances in surgery, an emergency admission with pneumonia, a stay
on the intensive care unit or membership of a service that supports a patient with a

long-term health condition in which a high-level summary view will be sufficient.

8.1.3 Design by contract

As such, what are the inputs and outputs that are required from an EU applica-
tion? At the minimum, any such application will need to be able to generate a
high-level summary document detailing the EU attendance and make that docu-

ment available to the national platform. Given such a summary needs to include

57

clinical information such as the list of problems, clinical findings, treatments ad-
ministered and procedures performed, these data should be highly structured using
SNOMED-CT. In order to support legacy applications, a low level of interoper-
ability may simply mandate a very simple data model with only core information
made available in a structured format. For modern and newly procured applica-
tions, it would be expected that all information relating to that attendance should
be made available to the national platform.

Therefore, once process, workflow and data are mapped, a contract must be
specified to define how the EU application should interoperate in which detailed
specifications as to what will be exchanged between the national platform and the
application itself. Such a contract may need to consider existing deployed legacy
applications as well as understanding the commercial market for products, taking
into account what is available. However, a product which operates at a high-level
of interoperability should be scored more highly that one that can exchange only
small amounts of structured information (Section [5.16/and Table [2)).

Once there is a contract of interoperability and functionality, it is evident that
as long as an application satisfies the requirements of that contract, it does not
matter whether the application is provided by Vendor A or Vendor B or is a devel-
opment of an in-house application. It is the contract that is “Once for Wales” and

not the application.

8.1.4 National interoperability requirements

A contract for an EU system should include the standardised recording of EU
attendances with coded outcomes together with problems, diagnoses and inter-
ventions coded using SNOMED-CT.

All attendances should include contextual information such as the:

e health professionals involved in that attendance must be included using a
standard reference such as their domain username or name and registration
authority reference number (e.g. General Medical Council or Nursing and

Midwifery Council number).

e organisation and site to which the patient attended using standardised codes.

58

e data to support national reporting requirements including date and time of
registration, of first and subsequent assessments together with final dispos-
ition.

An attendance in the EU should at a minimum generate a clinical document

with these clinical and non-clinical data encoded in a structured data together with
a human readable view. In conclusion, it is therefore clear that the design and

procurement of an EU system must begin with understanding the requirements, a

focus on data and standards and a contract of interoperability.

8.1.5 Local integration requirements

No healthcare application or service can be deployed in isolation but instead must
be integrated with any existing national and organisational architecture. Inter-
operability and integration is required at two levels: nationally and within the
organisation. Such considerations are important when one considers how to im-
plement an EU application and the amount of work to achieve integration at these
two levels may well be considerably different.

If the requirements for local integration are less than for national interoperab-
ility, then from an engineering perspective, it will be easier to procure a new ap-
plication that already supports the national interoperability framework and spend
time working on local integration.

Conversely, if the local integration is simpler, or indeed, already in place, then
it may be simpler to focus on improving interoperability with the national archi-
tecture.

The only other consideration is the functionality of the user-facing application

to ensure that it meets the needs of end-users.

8.1.6 A single specification vs. a single product

My final comments on the standardisation of EU applications within Wales is to
emphasise that a “Once for Wales” strategy should therefore focus on a single
specification and contract for Wales rather than a focus on a product. The spe-
cifications and contracts define how any such application should interoperate with

the national platform and should be “Once for Wales”. Designating that a single

59

application from a single vendor should be used across Wales is not appropriate,
risks innovation, is wasteful of limited resources and takes no account of existing

applications and infrastructure.

8.2 Diagnoses and problem lists

An understanding of the diagnoses and problems which a patient faces is a critical
informatics problem. Indeed, once such data are available in a routine and sys-
tematic fashion, it is possible to implement highly innovative informatics solutions
such as automatic monitoring of weight in patients with motor neurone disease or
showing a patient with multiple sclerosis how they are progressing compared to a
real-time aggregated plot of their peers (Figure [I0).

One approach is to use SNOMED CT as a terminology bound to an informa-
tion model, such as that provided by openEHR. Indeed, information systems such
as those used in primary care by general practitioners will typically have a dia-
gnosis and problem list which can be edited by all clinical staff in that practice
and these data form a valuable role in identifying cohorts of patients with specific
diseases. In general practice, the diagnoses and problems are coded as Read codes
and they will typically use a proprietary information model to link the diagnosis
with a date.

Some may suggest that a similar framework could be used in hospital practice
with healthcare professionals from different health professions, clinical special-
ties, services and organisations editing a master list of problems and diagnoses.
Advocates of this approach suggest that this would be simple to implement as part
of the existing Welsh Clinical Portal application and audit trail functionality could
be used to track changes in diagnoses over time.

However, I strongly advocate a different approach. Diagnoses and problems
are not as conceptually simple as they might first appear. As in Section[5.11] dia-
gnoses and problems are inherently context-specific and there is no single ‘truth’.
Diagnosis changes over time and there may be significant diagnostic uncertainty
over many years for many complex patients.

As such, although the openEHR archetype for diagnosis is detailed and in-

cludes metadata about certainty and status, that archetype is insufficient. A wider

60

~| EDSS / MS events

-
o

Evento - v w & v oo N ® v

om— _
B mv‘w‘dnm]

2008 2009 2010 2011 2012 2013 2014 2015 2016
Date

Apply date limits

[From: 17/09/2006 To:| |

Figure 10: A chart from the PatientCare electronic patient record application showing
real-time progress of a patient with multiple sclerosis compared to over 2500 other pa-
tients with multiple sclerosis. The dotted lines show the centiles and median progress of
the cohort.

61

Mr Donald Duck 1 Station Road, Disneyland date of birth: 1/1/1950 NNN: 111 111 1111

By service Active di Past di All di;
Active services and pathways 2
Service / pathway Date from Problems and status
Urology. . . R
(Mr. M. Jones) 11/2017 Haematuria. Awaiting cystoscopy - booked 5/3/2017
Neurology - Multiple sclerosis. Next appointment: 1/7/2017
Neuroinflammatory disease ~ 13/4/2008
(Dr. A. Smith)

Pending services and pathways 1

Service / pathway Date from Problems and status

USC Respiratory medicine . .

(Dr. Griffiths) 2/2/2017 Cough. Haemoptysis. Weight loss.
Past services and pathways 1

Service / pathway Dates Problems and status

EU attendance

(Dr. Griffiths) 21/5/2015 Bronchopneumonia

Figure 11: An example mock-up of a diagnostic problem list organised by membership
of clinical services and clinical pathways.

information model must be used in order to track patients to clinical services and
clinical pathways and it is only in the context of such a pathway, should a dia-
gnosis or problem list be considered.

For example, a patient may be an active member of a range of clinical services
and pathways, such as a lung cancer pathway, or a haematuria pathway. A patient
may have a range of long-term health conditions such as diabetes mellitus, hy-
pertension or multiple sclerosis. Such diagnoses may be linked by virtue of their
general practitioner problem list or membership of a long-term health condition
service such as services that care for patients with multiple sclerosis.

The model should therefore bind diagnoses and problems to these contexts
so that users can immediately see the contextual information that relate to those
diagnoses. An example of how this might look in an information system is shown
in Figure [I1] As I wrote in Section [5.11] a diagnosis of angina made as part
of a chest pain pathway after coronary angiography showed diffuse three vessel
disease is different to that made by a general practitioner after the patient reports
chest pain. They may have the same SNOMED CT concept but the contextual

information around that concept is essential. Similarly, a diagnosis of multiple

62

sclerosis recorded by the general practitioner in 1980 but with no corresponding
membership of a neuro-inflammatory clinical service currently or in the past must
be regarded different to a patient under the active follow-up and investigation by
an appropriate team.

Such a model does not preclude generating a simple list of diagnoses and
problems, but that view of an underlying more complex model is simply that: a
convenient view. Users must be able to drill-down to understand the context of
any diagnosis and problem list.

Pathways and service registration are critical contextual clues for all clinical
data, not simply diagnostic and problem lists. A document created as part of a
pathway should itself be linked at the data level so that, for a given service, all
correspondence relating to that service can be retrieved easily. Similarly, proced-
ures performed as part of that service or pathway should be recorded and linked
in the same way.

Such a model requires a national pathway identifier that can be used across
different organisations in order to track care. A pathway may begin in one or-
ganisation but continue in another. Such a process does not need the same soft-
ware running patient administrative systems in Wales, which is how “Once for
Wales” is currently framed, but instead, requires administrative systems in each
organisation to interoperate with a national platform in order to support cross-
organisational working; this should be the true intention of a “Once for Wales”
strategy.

In a model in which diagnoses and problems are linked to services and path-
ways, how does one deal with changing diagnoses? When a patient is admitted
with chest pain to the emergency department, a new pathway is created and as
part of that pathway, an initial assessment can bind a concept of chest pain to
that pathway. Co-morbidities can be copied in to that pathway from the canonical
data model representing all contexts and the active and inactive diagnoses linked
to them. A health professional is able to choose to incorporate those diagnostic
entities into that context, such as an admission or discharge document and update
the status of those entities. As such, there is no one source of truth, but merely
multiple overlapping opinions as to what is ‘truth’ at any time-point. During the

admission with chest pain, when a prior label of ‘angina’ is updated to reflect a

63

new working diagnosis such as that the patient’s chest pain is due to gastrooeso-
phageal reflux disease, the diagnosis of angina can be refuted or repudiated with
such changes modelled within that pathway context.

This may seem to be a much more complex and messy version of a diagnostic
or problem list, but it maps closely to that of reality. As in Section[3.5.1] a model
must reflect real-life data and process, and mismatches should be avoided. In real-
life, the changing and fleeting diagnostic concepts created, refuted and repudiated
as part of the process of clinical care over time are reviewed by general practition-
ers who update their master list of diagnoses. The final solution therefore, must
incorporate a holistic cross-specialty diagnostic list sourced from primary care
systems curated, managed and the responsibility of that patient’s general practi-
tioner. This list however, complements the real-life model of diagnoses, bound to

clinical pathways within hospital-based services.

8.3 An all-Wales national growth chart
8.3.1 Background

Health professionals looking after children frequently need to monitor growth by
the systematic recording of weight and height over time. Traditionally, paediat-
ric medical notes will contain a paper growth chart containing normative centiles
reflecting the growth of patients with similar baselines characteristics. Unfortu-
nately, paper records are unsuitable unless care is provided only in a single centre
by a single team. Other challenges include the loss or misfiling of charts and with
any paper record it can be difficult to know who recorded each data point.

In Aneurin Bevan Health Board (ABHB), they created an electronic growth
chart solution in 2004 in which health professionals can securely record weight
and height and plot those results on an electronic growth chart. They now have
data on almost 20,000 patients with a total of almost 60,000 data points. It is a
system that has added value to those that use it.

However, while the solution provides important functionality, it is tightly
coupled to the ABHB infrastructure - a portal called Clinical Workstation and an
underlying product from a commercial company called CCube solutions. As such,

it is difficult to take this innovation and deploy it elsewhere without also migrating

64

the necessary dependencies. It is, in effect, an application containing elements of

user interface, logic and process, and an underlying data storage model.

8.3.2 Using the growth chart across Wales

How can the the innovative functionality already developed be deployed across
Wales? One option would be to deploy the electronic growth chart as a national
product and link to it from other products when health professionals looking after
children need to record a weight and height. However, this would be a mistake,
essentially focusing on products and not an information model. It would result in
linking applications at a user-interface level but not at a semantic data level.

Weight and height recording are generic requirements, not simply useful in
paediatric practice and it would be a mistake to spend valuable resource on
products that meet the requirements of only a single department or specialty
without considering how such functionality might benefit other users across NHS
Wales.

Instead, as I have opined in Sections and[5] the national ‘platform’ should
support the routine, systematic storage of structured clinical information using
a robust information model. OpenEHR archetypes for height and weight meas-
urements are available as part an OBSERVATION classE-I A platform that links
patient demographics with these archetypes together with an understanding of
clinical context (was it measured in clinic or at home, which clinical service,
which clinical pathway, which user performed the measurement, what was their
job title?) can safely act as a repository for such structured information.

Importantly, simply adopting an OpenEHR archetype does not necessarily res-
ult in automatic interoperability. Critically, the contextual information relating to
that structured data needs to be standardised (see Section [5.16). If the ABHB
solution uses the same user directory than stipulated by the national platform,
then different software have the same meaning for a specific user so that “John
Smith” in one system is the same “John Smith” in another because they share the

same user record by virtue of a unique username and critically, that differentiates

2ISee the OpenEHR Clinical Knowledge Manager - http: //www.openehr . org/ckm/
22This is ‘NADEX’ in Wales, an Active Directory of all users in Wales

65

http://www.openehr.org/ckm/

that “John Smith” from the other “John Smiths”. Similarly, data relating to or-
ganisations, hospital sites, surgeries and services must be standardised across the
enterprise in order to permit full interoperability between systems.

Using this information model, there are then two approaches to integrating the
ABHB solution and making its innovative functionality available to other centres.
If the ABHB product is already established and, as built, is difficult to extricate
from its existing data model, then horizontal integration at the data level may be
appropriate. This would be logically called a “legacy integration approach” in
which the ABHB product continues to store data in its proprietary data store, but
makes its data available to the national platform either by exposing a service from
which to “pull” results or adopts a “push” approach when new data are added.
Such an approach suits legacy systems which are themselves vertically integrat-
ing binding together multiple layers in one application. Such a solution could
make the underlying growth measurements available as OpenEHR archetypes or
as an FHIR service providing a limited OBSERVATION type of resource made
available via a REST-based web service.

However, if the product is itself built with a clear separation between user
interface elements and the data model, then it may be possible to adopt a national
platform for the storage of data and simply innovate at the workflow, process and
user interface levels, leveraging the core standards within the platform to store and
retrieve weight and height data for an individual patient.

Indeed, the latter approach could result in the growth chart being more widely
used by different specialties. For instance, a relatively small and simple project
could be undertaken to take data from the national platform and display the data
on a range of growth charts, just as in ABHB. Indeed, as the national platform has
provided the necessary infrastructure required, actually plotting the data and com-
paring to normative data sets would be straightforward. However, once tested and
deployed in one organisation, it would be straightforward to apply this innovation

to other organisations and other services.

66

8.3.3 Designing for innovation

In addition, this approach provides future opportunities for innovation. A project
to create a “growth chart solution” will do just that, create only a piece of soft-
ware to create growth charts. Any additional functionality requires change in that
proprietary product and therefore potentially limits its more widespread adoption
and the development of more innovative solutions using the same data.

Instead, why shouldn’t child health surveillance occur in a semi-automated
fashion, with logic and algorithms assessing children’s growth velocities to send
clinical staff alerts when growth is tailing off? It is an important component of
clinical information system design to consider the future vision for healthcare in-
formation technology and how health data can be integrated logically to allow
real-time and grouped alerts. If we expect all children with chronic health condi-
tions to have their growth plotted at a certain interval, then small, relatively easy
to write software can be deployed to combine growth chart data with records of
chronic diseases to automatically monitor the frequency of observations and send
alerts when growth is less than expected.

In conclusion, a focus on a product-based design limits future scope for innov-
ation and risks vendor lock-in. Health data must be made more widely available

at an infrastructure level.

8.4 Prescriptions

An example of software to handle prescriptions is the NHS Wales’ ‘medicines
transcription and electronic discharge’ (MTeD) system. In it, the Welsh Clinical
Portal software receives an ‘Admit/Discharge/Transfer’ (ADT) message from the
underlying Patient Administrative System (PAS) informing it of a patient admis-
sion. On receiving this message, a draft discharge document is created which
allows clinical staff to start populating the discharge advice letter (DAL) through-
out the admission. This appears as a draft document in the document list for that
patient. At the same time, in the absence of inpatient ePrescribing within NHS
Wales, a list of medications is transcribed, either on admission or more usually by
pharmacy staff during the admission. This is kept synchronised with changes in

the inpatient medication chart as much as possible. When a discharge is planned,

67

a two-step process is required to sign off the DAL and to sign off the final list of
medications. Sign off of medications originally required signing by a member of
the medical team and then final check by a pharmacist, but this restricted use out-
of-hours and so the software was changed to support a DAL being sent without a
final pharmacy check when used out-of-hours.

There are several important realised and potential benefits to this system:

e Paper discharge letters were incomplete, frequently illegible and needed to
be sent by post. Electronic discharge letters can be sent immediately and

can form part of an electronic record for patients.

e Work on completing discharge letters could begin on admission and poten-

tially continue through the inpatient stay.
However, as designed, there are several major disadvantages as well:

e The solution is tied into the low-level messaging architecture forcing a doc-
ument to be created at the time of admission and sent at the time of discharge
from the underlying PAS. We now have many patients with alerts showing
‘DAL incomplete’ even when the patient has been discharged but with no
mechanism for completing the document. This process does not match what
happens in real-life and therefore is an important model mismatch (see Sec-
tion|3.5.1).

e The medication list sign-off and its incorporation into a discharge letter hap-
pens when a discharge notification is received from PAS. This is another
model mismatch between the process in software and what happens in real-

life on a ward.

e If the DAL is loaded, users cannot edit the medication list within the DAL,

but have to switch back to a different screen to edit the medication list.

e There is no way alternative mechanisms for creating a DAL can be used.
For many clinical situations, such as day case surgery, a DAL could be com-
pleted automatically based on workflow and process models within the day

unit, such as the type of procedure performed and whether there were any

68

complications. The current system is a closed system and any adaptations

would need further development time.

There are also some serious usability concerns with a clunky user-interface
and performance problems.

How could this design be improved? One of the most difficult decisions in
clinical information system design is how to limit the scope of a particularly sys-
tem dividing up responsibility for different tasks to logically-organised systems.

Fundamentally, what are we trying to achieve? The key issue is the ability
to send a timely, accurate and legible DAL at the time of discharge. When this
process is performed using paper-based solutions, a doctor will typically complete
a handwritten form, the ward staff send it to pharmacy which checks and issues
the prescription, it returns to the ward and either taken by the patient or posted to
the general practitioner. A carbon-copy is filed in the medical notes. If a patient is
discharged when pharmacy staff are not available, sometimes the prescription is
picked up on the next working day or in emergency settings, some wards or units
will dispense medications from their stores.

When one considers that process, it is easy to see how the team ended up
creating the system as designed. However, the creation of a DAL is fundamentally
part of the workflow of the unit and so I would consider dividing up the solution

into the following components:

1. A patient-level document store which allows clinical documents to be stored
linked to clinical context including admission episodes and national path-
way identifiers. Such a store needs to mandate an appropriate information
model so that documents of type ‘DAL’ can include diagnostic, intervention
and medication information in a structured format encoded in SNOMED-
CT. The medication information should be able to store not only a list of
medications at the time of discharge but other critical information such as
which medications have been stopped, when a certain medication should be
stopped etc. In some cases, it will be appropriate to support a DAL which
semantically encodes “no medication changes” for use in certain clinical

environments.

69

2. A workflow system that allows a generic DAL to be created linked to the

admission episode and national pathway identifiers.

3. In the absence of a national ePrescribing solution, a workflow solution to
allow the recording of admission medications and subsequent changes to
those medications. This list is conceptually linked to the inpatient stay and
is kept loosely in sync with the paper prescription by pharmacy staff. This
becomes the “current medication list” and should a national ePrescribing
system be developed, then logically, that service could provide that inform-

ation.

As such, in certain clinical settings, depending on the workflow and process
required, at the time of discharge, a doctor starts or completes a DAL, which
automatically brings in a copy of the “current medication list” from the interim or
final ePrescribing software, allowing the doctor to sign it off. At in the real-world,
the draft DAL does not include the medication list. If a DAL is complete and
a list of medications has been pulled from the “current medication list” service.
If changes are needed, then those changes can be made as part of the DAL and
those changes are pushed back to the “current medication list” service. Depending
on need, that DAL can then be checked by pharmacy staff or medical staff can
explicitly choose whether to send without a pharmacy check. Once the patient
is discharged, the DAL can be sent electronically and pushed to the document
store. If the patient has already been discharged, then the document can be sent
immediately therefore allowing the completion of a DAL shortly after the patient
has been discharged.

In other settings, a DAL may be created dynamically from a different work-
flow, potentially making use of the services used by the more generic workflow
such as handling the lists of medication, but automatically completing the dia-
gnostic and procedural information.

Importantly, the creation and sending of the DAL is not necessarily bound to
the underlying ADT messages signifying a patient is admitted or discharged, but
instead linked via a workflow system that allows flexibility in approach depending

on the requirements. As the creation, signing and sending of a DAL is inextricably

70

linked to the clinical process, those pieces of functionality should form part of that
workflow and not be isolated from it causing information model mismatch.

For this, team and ward-based workflows will need to conceptualise the ad-
mission and discharge of patients and handle the management of a DAL for each
patient. As such, in those contexts, users must be able to see a list of their patients,
the status of a DAL if it exists and an ability to create, edit and sign-off that docu-
ment. In addition, those lists should include lists of discharged patients without a
discharge advice letter, acting as an important nudge to clinical users to complete
these vital documents. Aggregated data on DAL completion and the timeliness
of correspondence must be made available in order to appropriately manage this

component of our clinical services.

71

	Introduction
	The medical record
	Paper medical records
	Clinical governance
	Electronic medical records

	Clinical Modelling
	High-level functional requirements
	The process of developing a clinical model
	Modelling the medical record
	Electronic medical records and the importance of context and provenance.

	Modelling the processes involving medical records.
	Modelling and implementation
	Avoiding mismatches between a model and real-life.

	Data standards and terminology
	SNOMED CT
	Information models
	HL7
	HL7 V2
	HL7 V3 and the RIM
	HL7 V3 CDA
	FHIR

	openEHR
	LOINC

	Technical architecture
	Have an overall vision but plan for change
	The model-view-controller (MVC) design pattern; ensure separation of concerns
	Adopt test-driven development
	Favour automated testing and deployment pipelines with continuous delivery
	Use a layered structure within applications
	Use loose coupling between components; design by contract
	Adopt a service-orientated architecture
	Use a layered architecture with services
	Who is in control in a layered architecture?
	Model process and not simply data
	Favour immutability of data, but understand that there is no one `truth'
	Make services idempotent
	Adopt uniform resource identifiers for access to resources
	Are there exceptions to the use of a layered architecture?
	Push vs. pull
	An open platform for the health enterprise
	Data analytics and an enterprise-wide warehouse
	User-facing applications

	Organisational structures
	Bind organisational structure to the technical architecture
	Strategy, procurement and planning
	Clinical informatics, career development and skills

	Conclusions for NHS Wales
	Overview
	Suggested actions

	Worked examples
	Emergency unit systems
	Introduction
	Analyse process, workflow and data requirements; nesting of data
	Design by contract
	National interoperability requirements
	Local integration requirements
	A single specification vs. a single product

	Diagnoses and problem lists
	An all-Wales national growth chart
	Background
	Using the growth chart across Wales
	Designing for innovation

	Prescriptions

